CGS09 - VC Divider

Useful as a timing accessory for sequencers, or with a VCO for frequency trills like those of the old 8-bit computer games. Unilke other voltage controlled dividers, this one preserves the pulse width of the incoming signal.

This is a PCB only suitable for multiple formats

Availability: In stock




This is an upgraded version of my older voltage controlled divider. It has additional mixing and a comparator at the clock input, additional range, and will now work on 12V if needed, as the internal regulator has been eliminated.

This was originally developed a timing accessory for a sequencer I was working on, though when fed from a VCO, interesting frequency trills like those of the old 8-bit computer games can be produced. Feeding the control voltage from a Psycho LFO produces some interesting effects.

There are two outputs, one a narrow "trigger" pulse, the other following the pulse width of the incoming signal. This means that any mark/space ratio sweep being applied to a VCO connected to this module, will also be on the output signal of this module.

The division can be varied from divide by 1 to approximately divide by 60.

How to use this module:

Connect the input to a signal source such as a VCO, LFO or sequencer master clock. Use the control voltage input to determine the number of incoming pulses per output pulse.

There are two pulse outputs, marked HO and LO on the PCB. HO (High Frequency out) gives a narrow trigger pulse output. LO (Low Frequency out) gives a pulse output, the width of which varies with the pulse width of the incoming signal. Depending on the individual ICs you use, the propagation delays of the chips will limit the speed at which the LO output can function. I estimate it drops out above 10 kHz, though as mentioned, it does vary with individual 40106 chips.

Experiment with it.

A little on how it works:



The schematic of the Voltage Controlled Divider.

The Voltage Controlled Divider consists of several distinct blocks, each which is fairly simple in its operation.

The circuitry around IC1B processes the incoming frequency, and squares up the waveform so it is suitable for the digital portions of the circuit. It drives the counter (4024) and sets the output flip-flop based around two portions of the 40106. This block is fed via a DC mixer stage which includes both inverting and non-inverting inputs, as well as a DC offset allowing for easy adjustment of the "sweet spot" for the incoming signal. The mixer also has an output making the unit a handy utility module even when you are not doing any dividing.

The output of the counter (4024) is connected to a D to A converter made using an R/2R resistor ladder. The incoming pulse train will step the counter (4024) until the voltage on the output of the D to A converter is greater than that on pin 2 of IC1A, at which point the output of IC1A changes state, putting a HIGH on the HO output, resetting the flip-flop, and triggering a short delay that resets the counter to zero. This clears the HO output back to LOW.

The flip-flop drives the LO output through a transistor buffer.

IC2 is dedicated to processing the incoming control voltage. The first part of the circuit is a precession half-wave rectifier, blocking any CV that goes below 0 volts. The second part is used to set the minimum and maximum of the voltage presented to IC1A, as going past either end of the operating range results in either silence or an unpredictable oscillation. (Divide by 0 is NOT very practical!)

Specs & Downloads

Specs & Downloads

manufacturer CGS
Depth No
+12V No
-12V No
+5V No
Additional Resources BOM & More Information


Write Your Own Review

You're reviewing: CGS09 - VC Divider



Use spaces to separate tags. Use single quotes (') for phrases.